Understanding and Predicting The Attractiveness of Human Action Shot
نویسندگان
چکیده
Selecting attractive photos from a human action shot sequence is quite challenging, because of the subjective nature of the “attractiveness”, which is mainly a combined factor of human pose in action and the background. Prior works have actively studied high-level image attributes including interestingness, memorability, popularity, and aesthetics. However, none of them has ever studied the “attractiveness” of human action shot. In this paper, we present the first study of the “attractiveness” of human action shots by taking a systematic data-driven approach. Specifically, we create a new action-shot dataset composed of about 8000 high quality action-shot photos. We further conduct rich crowd-sourced human judge studies on Amazon Mechanical Turk(AMT) in terms of global attractiveness of a single photo, and relative attractiveness of a pair of photos. A deep Siamese network with a novel hybrid distribution matching loss was further proposed to fully exploit both types of ratings. Extensive experiments reveal that (1) the property of action shot attractiveness is subjective but predicable (2) our proposed method is both efficient and effective for predicting the attractive human action shots.
منابع مشابه
Diversity management and human resources productivity: Mediating effects of perceived organizational attractiveness, organizational justice and social identity in Isfahan’s steel industry
Acknowledged by most researchers and scholars, human resource productivity is the most important factor in the resistive economy and business. On the other hand, Workforce diversity is one of the major challenges of this century; and perhaps for managers, managing diversity is more important than seeking diversity to maximize the human resource productivity. The present study aims to analyze th...
متن کاملModelling of Conventional and Severe Shot Peening Influence on Properties of High Carbon Steel via Artificial Neural Network
Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conv...
متن کاملAction mirroring and action understanding in children
The past decade has experienced an increasing interest in action underestanding and children’s mirroring of others’ behavior. Behavioral investigations have focused on the development and significance of mimicry, goal prediction and imitation. Others have focused on the neural basis of action mirroring, identifying particular electrophysiological markers or related brain regions. A vivid debate...
متن کاملCustomer Behavior Mining Framework (CBMF) using clustering and classification techniques
The present study proposes a Customer Behavior Mining Framework on the basis of data mining techniques in a telecom company. This framework takes into account the customers’ behavior patterns and predicts the way they may act in the future. Firstly, clustering technique is used to implement portfolio analysis and previous customers are divided based on socio-demographic features using k</em...
متن کاملAn Umbrella Named Action Research
Action research is a means for creating meaning and promoting understanding of complex social situations, and improving the quality of human interactions and performance in those situations. Action research is one of the words that can be heard now frequently in the educational cycle, but there are several definitions for it. Literature review shows that several writers have referred to this co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.00677 شماره
صفحات -
تاریخ انتشار 2017